

VIKRANT TYRE PLANT, MYSURU. KARNATAKA

WELCOME

TO

NATIONAL AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT 2023

Presenters

Name	Email ID	Phone Number
Nagendra BN	nagendra@jkmail.com	9986039012
Praveen Sambrekar	ps.praveen@jkmail.com	8884600255
Damodar M	damodar.m@jkmail,com	9538872782

Save Energy. Save Money. Save the Planet

1.PLANT / UNIT INTRODUCTION

VIKRANT TYRE PLANT, MYSURU Mysuru Karnataka

3 Plants in Mysuru	Current Capacity (MT/Day)
Bias Plant	185
Radial Plant	195
OTR Plant	26
TOTAL	406 (~8,500 tyres/ day) 3000 Employees

VTP: SYSTEM CERTIFICATIONS (since early 1990s)

VTP - SYSTEM CERTIFICATIONS (since early 1990s)

TYRE BUSINESS : JK TYRE & INDUSTRIES

- JK Tyre & Industries Ltd is a part of prestigious JK Organization
- Pioneered Radial Tyre revolution in India
- Technical Self-reliant.
- Capacity Initial capacity : 55 Tons/ Day (at Kankroli in 1977) Current capacity : > 2,000 Tons/ Day Annual Turnover : > Rs. 10,300 Crores
- 12 Plants -
- Mysuru (Karnataka) - 3 Plants: Kankroli (Rajasthan) - 1 Plant, Banmore (MP) - 1 Plant Chennai - 1 Plant Laksar (Uttarakhand) - 3 Plants Mexico (Tornel) - 3 Plants
- Plant 1 Plant 2 Plant 3 Si No Certification Radial Bias OTR \checkmark \checkmark ISO 9001:2015 / IATE 16949: 2016 QMS (Quality Mgmt) (1994) ~ 1 \checkmark 2 ✓ \checkmark ISO 14001: 2015 EMS (Environment Mamt.) (1999) ~ 1 ~ 3 ISO 45001:2018 (Occupational Health & Safety) (2019) 4 ~ \checkmark \checkmark ISO 50001:2018 EnMS (Energy Mgmt.) (2013) \checkmark ✓ \checkmark 5 SA 8000 : 2014 (Social Accountability) (2016) \checkmark 6 ~ ISO 27001:2013 (Information Security Mgmt.) (2016) 1 1 7 NA ISO/IEC 17025:2005 - NABL Accreditation (for Laboratory) (2016) 8 IMEA – Gold Award 2010 (Participated in 2006 & 2007 and won Silver award) 9 TPM Certification (Excellence) JIPM, Japan (2010) CII Sohrabji Godrej Green Business Centre - GreenCo PLANTINUM Award (2018) 10 11 TPM Certification (Consistency) JIPM, Japan (2016)

ENERGY POLICY

VIKRANT

SUSTAINABILITY POLICY

Jł Tyre & Industries Ltd commits itself to minimising its impact on o environment through

- Providing a safe and pleasant workplace free from Hazard & Risk;
- Create environmentally sustainable culture, where responsibility is assigned and understood;
- Being an Socially & environmentally responsible neighbour in our community;
- Conserving natural resources by adopting reduce, reusing and recycle concept;
- Reduce Energy consumption by ensuring the responsible use of energy throughout the organisation;
- Increase the share of Renewable energy throughout the organisation
- Participating in efforts to improve environmental protection and understanding
- Taking steps to improve environmental performance continually;
- Conducting rigorous audits, evaluations, and self-assessments of the implementation of this policy;
- Working with suppliers who promote best environmental & sustainable practices
- Enhancing awareness among our employees, volunteers, and users – educating and motivating them to act in an environmentally responsible manner.

+ the paioup

Authorised and Approved by Arun K. Bajoria Director & President (International Operations)

ENERGY POLICY

at JK Tyre are committed to design, manufacture and distribute our products & services in an energy efficient manner to meet our mission statement of becoming a green company. We will continually improve our energy performance for sustainable growth by:

- Complying with all applicable legal and other requirements related to our energy use, consumption and efficiency.
- Taking measure in Energy Management System by being proactive, innovative and cost effective including procurement of energy efficient product & services.
- Enhancing effectiveness of energy management system by ensuring the availability of information and necessary resources to achieve the objectives and targets.
- Integrating energy policy into our business planning, decision making and performance review at appropriate level.

We commit to communicate this policy to all our employees, persons working for and on our behalf and also will make it available to all interested parties on request.

3

2.MANUFACTIRUNG PROCESS

Λ

ENERGY MANAGEMENT TEAM

VIKRANT

5

3. SPECIFIC ENERGY CONSUMPTION

55.76

6

Total Power

Tyre Curing section is

significant thermal

energy consuming area

12320, 18%

BU3

HWG

UTY

ENERGY CONSUMPTION - POWER (kWh/TON)

Series1

	SPC CALC : 0.800					
	BASELINE	BASELINE	BASELINE	BASELINE	BASELINE	BASELINE
30	FOR 140 MT	FOR 150 MT	FOR 160 MT	FOR 170 MT	FOR 180 MT	FOR 190 MT
anny.	140.00	150.00	160.00	170.00	180.00	190.00
POWER W.R.T GIVEN PRODUCTION	127125	131683	136241	140800	145358	149916
MAXIMUM ACHIEVABLE SPC W.R.T GIVEN PRODUCTION	0.908	0.878	0.852	0.828	0.808	0.789
% Impact on SPC	13.105	10.121	7.337	4.733	2.292	0

We have reduced the Energy consumption by 5 % from past 4 years

ENERGY CONSUMPTION – THERMAL (KCAL/TON)

OVERALL ENERGY CONSUMPTION (GJ/TON)

FHERMAL ENERGY CONSUMPTION (MTOE / TON)

10

SPECIFIC ENERGY CONSUMPTION - POWER (kWh/Kg)

Achieved energy targets despite low production & other challenges. This is the clear impact / result of implementing the energy conservation projects

11

Good

SPECIFIC ENERGY CONSUMPTION - STEAM(Kg/Kg)

4. INFORMATION ON COMPETITORS, NATIONAL & GLOBAL BENCHMARK

ENERGY SAVING PROJECTS IMPLEMENTED : 2020-21

	Duiof Description of project	Approved	Saving per yea	r (Rs. In Lacs)	Energy Saving Planned	
Project Sr no	Brief Description of project	Lacs	Planned Yearly	Achieved	Qty	UOM
1	Increasing Boiler feed water temperature from 95 to 110 by using CBD.	10	23	26	248	MT
3	Installation of VFD in Krupp Extruder Booking Water Blow off Blower	12	11	8.9	11867	kwh
4	Installation of VFD for Hydraulic & Condensate recovery pump -2 Nos	5	6	7.45	99467	kwh
5	Shifting 110 KW carbon handling compressor to Utility area to stop 132 KW	10	3	3.7	49733	kwh
7	Use of ETP tretaed water to process cooling tower make up	5	6	6.9	70000	kwh
8	Energy Efficient pumps for process cooling tower	1.5	2	2.48	33067	Kwh
9	HPS purging steam recovery to boiler	31.2	30	31.2	2740	MT
10	Skoda dome type press platen conversion	42.9	40	43	3905	MT
11	Installation of VFD for HWS Pump to reduce Dead Load	5	3	3.2	49700	Kwh
12	Rerouting /modification of process cooling water return header lines at Cooiling tower	13.8	1	1.38	213000	kwh

14

ENERGY SAVING PROJECTS IMPLEMENTED : 2021-22

Project Sr	Priof Description of project	Approved	Saving per year (Rs. In Lacs)		Energy Sav	ing Planned
no	Brief Description of project	Amount in Lacs	Planned Yearly	Achieved	Qty	UOM
1	Nitrogen conversion in place Hot Water in	242	170	189	1750000	KWH
					7000	MT
2	For Ice blasting HP air main inlet line and SAV areaHP air mian line 50NB air regulator to be fix to control more air prerssure loss and to avoide inflation error during ice blasting	1.5	3	4	48500	КШН
3	Engg_VFD for the 110 kw hydrulic pump	5.5	6	6.18	77256	KWH
4	Installation of Individual energy meters to Auxiliary equipment's in Mixers & utility section for micro level monitoring of power consumption on daily basis & necessary optimization for energy savings	45	25	30	40427	kwh
5	Improvement of overall Plant Power factor from 0.97 to 0.99 and reduce the distribution Loss by installation of2X 500KVAr APFC panel for PCC-1, 2500KVA transformer	24	15	15.8	74460	КШН
6	Improvement of overall Plant Power factor from 0.96 to 0.98 and reduce the distribution Loss by installation of 500KVAr APFC panel for PCC-2, 1250KVA transformer	8.6	15	14.5	193333	Kwh
7	SAV & Curing area AHU retrofit with EC fans	65	35	33	440000	Kwh
8	Recovery of boiler CBD heat to increase boiler feed temperature	8	10	9.76	177.5	MT

ENERGY SAVING PROJECTS IMPLEMENTED : 2022-23

Project	Priof Description of project	Approved Amount	Saving per yea	ır (Rs. In Lacs)	Energy Saving Planned	
Sr no	Bher Description of project	in Lacs	Planned Yearly	Achieved	Qty	UOM
	Nitrogen conversion in place Hot				1750000	KWH
	Water in bias curing (savings in coal		170			
1	& power)	242		189	7000	MT
	For Ice blasting HP air main inlet line					
	and SAV areaHP air mian line 50NB					
	air regulator to be fix to control more					
	air prerssure loss and to avoide					
2	inflation error during ice blasting	1.5	3	4	48500	KWH
	Engg_VFD for the 110 kw hydrulic					
3	pump	5.5	6	6.18	77256	KWH
	Air consumption reduction in Mixer-					
	6 Dust collector & carbon Day bin					
	purging system through introduction					
4	of flow meter & PLC control	5	3	3.07	38484	KWH
	Improvement of overall Plant Power					
	factor from 0.97 to 0.99 and reduce					
	the distribution Loss by installation					
	of2X 500KVAr APFC panel for PCC-1,					
5	2500KVA transformer	24	15	15.8	74460	KWH

5.ENERGY SAVING PROJECTS IMPLEMENTED : 2023-24

Proiect Sr		Approved	Saving per yea	ar (Rs. In Lacs)	Energy Saving Planned		
no	Brief Description of project	Amount in Lacs	Planned Yearly	Achieved	Qty	UOM	
1	Usage of ETP water for Boiler / Process - RO plant connected UV plant	20.0	15.0				
2	Modification And Erection of boiler to suite Bio mass	1100.0	331.0		35.0	Mkcal	
3	SAV AHU 3 and Fisher cutter fan to be replaced with energy efficient fan	14.00	7.36		0.74	Mkwh	
4	Replacing Preparation area blower fans to Energy Efficient fans	7.00	3.91		0.50	Mkwh	
5	Platen press top insulation and steam line insulation	3.50	15.40		55.00	Mkcal	
6	Replacing 300 TR VAM to350 TR VFD operated Electrical chiller	90.00	61.77		85.00	Mkcal	
7	Installing VFD for 160KW LP air compressor	14.00	7.26		1.40	Mkwh	
8	Installation of 37 kw pump in Hydrualic tank to reduce the pumping power	7.00	10.08		0.70	Mkwh	
9	Instalation of 37 KW VFD in VAM cooling tower pump to reduce the pumping ppower	5.00	3.15		0.50	Mkwh	
10	37kw VFD for curing Air washer system	5.00	3.63		0.50	Mkwh	
11	Banbury Hot Well Pump Optimization with VFD & Piping Modification	6.50	6.65		0.65	Mkwh	
12	Air consumption reduction in Mixer-6 Dust collector & carbon Day bin purging system through introduction of flow meter & PLC control	5	3	3.07	38484	KWH	

17

OVERALL IMPACT OF ENERGY SAVING PROJECTS

Thermal (Coal in MT)

Savings Summary

Year	No of Energy Projects	Amount Invested Millions	electrical saving Kcal Mkw	Thermal Saving Mkcal	Total Savings INR millions	Pack back months
FY 2020-21	12	13.8	1.178	31319	13.6	13
FY 2021-22	8	15.7	0.867894	942	12.6	15
FY 2022-23	5	27.8	1.9887	25200	21.8	16

General procedure for financial resources allocation for projects

- Identification of Significant energy use
- Monitoring of EnPI for identified significant use
- Benchmark / target for identified significant energy use
- Energy gap analysis & energy loss mapping
- Identification of energy projects / kaizens to bridge gap
- Prepare Energy Management program with savings & Payback information
- Submission of energy projects to HO for budget approval (> Rs 2 Lacs investment)
- Review of projects, approval and allocation of resources by Management
- Implementation of projects at site
- Post Implementation savings audit and reviews
- Monthly energy project status review by Unit Head & HO

6.INNOVATIVE PROJECT IMPLEMENTED

1. Energy savings through Machine modification

Kaizen Title: Thermax boiler Coal Feeder Modification Problem or present status

Due to Hot water replaced to Nitrogen, The boiler load was reduced and during running of Thermax Boiler it was observed that due to low load on boiler, steam was vented to maintain the bed temperature. This had impacted on Nosie issue and wastage of Coal. Also DM water consumption and its related chemical consumption was on higher side. This was Increasing the Specific steam consumption as well as Specific water consumption.

IDEA :Detail study of Boiler was conducted by different boiler vendor visited and recommended to down size the boiler by reducing in pressure part . The cost of which was around 1.5 crore with lot of govt approvals .By doing a detail study of Coal and Combustion air we planned to maintain the bed temperature to the lowest level . For this we planned to increase the coal Sprocket Teeth and reduce the coal feeding to the minimum requirement

IMPACT ON PPROBLEM

 Total investment 	: 10000 rs
 Savings in Steam @ 35 day /yr 	: 2100 tons
 Savings in water @ 35 day/y r 	: 2163 KL
Net savings in Rs	: Rs 46lacs
■ ROI	: 1 day

Standardization :

SOP,FMEA & design documents

ROOT CAUSE IDENTIFICATION

Why # 1	Steam load requirement lower side
Why # 2	Bed Temperature not under control
Why # 3	Coal feeding RPM no Tolerance
Why # 4	Feeder Sprocket Size More

Sprocket with 41 teeth

Sprocket with 52 teeth /22% reduction

6.INNOVATIVE PROJECT IMPLEMENTED

Kaizen Title: Addition of New Dome steam line in curing

Problem or present status

During each round of GT Loading , HPS steam is passed to attain the internal temperature. During loading of 80 presses there was Steam pressure drop observed, which resulted in Steam temperature drop. This dropp was effecting the quality and even had impact on cure cycle timing and Tyres production target was meeting. To over come the Pressure drop extra cure was given resulting in more of steam consumption and Power consumption.

Detail steam line drawing with flow rate, pressure and temperature was taken. The cure cycle timing was studied with different construction. Since this been a batch process the load variation was on higher side and consistence in HPS pressure was not getting. Then a detail velocity mapping was done where it wad found that the Dome line steam consumption was affecting the HPS drop. So the Dome and HPS steam line was redesigned to maintain the standard velocity.

IMPACT ON PPROBLEM

- Specific power consumption is high
- Specific Steam consumption is High

IDEA

 Addition of New steam line for DOME to reduce pressure Drop during GT loading in HPS stage

Investment & Savings

- Total investment
- Savings in Steam /Year
- Savings in Power /Year
- Net savings in Rs
- ROI

: 11428 kw : Rs 1276000 : 1.8 years

: 23 Lakhs

: 604tons

Standardization :

SOP,FMEA & design documents

ROOT CAUSE IDENTIFICATION

Why # 1	Pressure drop during loading
Why # 2	Steam velocity variation
Why # 3	Common Steam line circuit in Curing

Common Steam line

New Dedicated Dome Steam Line

PROBLEM SELECTION AREA : MIXING

Major problems in Mixing area (as per past performance data of 2021-22) listed and ranking done with respect to PQCDSME to prioritize the problem. The problem having -highest score is taken up for as 1st priority to be addressed in 2022-23 by the team.

Key Problems	S	Q	Ρ	С	En	E	Total (S+Q+P+C+E+ En)
Batch off mill problem				1	1	1	8
Dump Mill breakdown				P	1	1	7
BOPT break down compound	relat I sup	ted to ply is	sue		1	1	11
TCU problem got high	iest m se	rakinų lecteo	g, d to	\int	2	1	10
Bale cutter problem work in t	his p	oroble	em		1	2	8
Main motor problem			2	4		1	8
Compound supply issue	1	3	5	3	3	3	(18)
Mill surface temperature high	2	1	1	2	1	1	8
Loss due to change overs	1	1	3	1	1	2	9
Absenteeism	2	1	1	1	1	1	7

ROOT CAUSE

Banbury Mixers designed to produce 136MTs/day as Preparatory requirement is 157MT/day

KAIZEN IDEA

To enhance Banbury production to meet internal customer demand

6.INNOVATIVE PROJECT IMPLEMENTED

Contd..

4.NEW Technology

RNAL PARTS

6.INNOVATIVE PROJECT IMPLEMENTED

Contd..

4.NEW Technology

TRNEL

7. UTILIZATION OF RENEWABLE ENERGY SOURCES

Туре	Units	Annual Consumption	% of total power	
Unit purchased from IEX	Million KWh	6.86	6.23	
Unit purchased from Renew Energy	Million KWh	79.25	88.24	
Unit purchased from CESCOM	Million KWh	3.81	4.30	
Units generated from Roof Top Solar	Million KWh	0.65	0.66	
Units generated from recovery Turbine	Million KWh	0.75	0.20	
Total Power	Million KWh	92.0	100	

90% of total power consumed is from Green Source in FY22-23

Minimum Rs 3.5 crore / Annum for next 10 years (starting from 2017) Budget allocated for RE power purchase

Carbon Sink

13954

Sr.	Location	No of Trees	No of Shrubs	Net Estimated Carbon Sink of JKTIL due to tree plantation (tCO2) from beginning to March 2022
1	Kankroli Tyre Plant	84,570	338,584	12510.80
2	Banmore Tyre Plant	133,586	37,434	11006.37
3	Chennai Tyre Plant	15,287	6,999	2363.87
4	Vikrant Tyre Plant	83,058	117,865	15848.43
5	Cavendish Industries Ltd.	11,259	248,752	2510.71
	Total	327,760	749,634	44240.18

S 1/81

7a. UTILISATION OF WASTE MATERIAL AS FUEL

1) Use of Dry Leaves

- We do not generate industrial waste which can be used as fuel.
- Other waste such as Wood packing scrap material, trimmed branches, Dry leaves is sent for briquetting & re used in boiler as fuel.
- CO2 foot print reduced by around 53
 Ton / annum (by offsetting coal)

2) Re Use of Coal Dust

- Coal dust generation during coal crushing process/floor sweeping , dust
 - being wasted through fly loss
- Pallet making machine installed to convert the coal dust into pallet form and re-used at boiler

3) Use of Biomass

Biofuel utilization increased from 2.5% to 28% (daily 500 kgs pallets making using coal dust) Cost Savings of Rs. 14 lakhs /annuum

Biofuel Utilization (%)

Total Coal savings from (1&2) (Tons / annum)

26

8. GHG INVENTORISATION

(ISO14064-1:2019)

TRANE

09. GREEN SUPPLY CHAIN

Green purchase guidelines

	NDUSTRIES LTD.
VTP/MTLS/Greenco & EnMS/01	Date 10 67 doin
Dear Sir,	Date: 1007/2015
Sub: Greenco and Energy Management Syst	erbs EnMS - 50001 certification
We are pleased to inform you that our becoming Green Company by adopting G Environment / Energy is accorded the high our plants are responsible for monitorin performance.	Vikrant Tyre Plant is in the journey of reence & Energy Management System, next priority by the top management and g and improve environment / energy
You being our business partner, we expect and to follow the norms and be a part or requirement / services supplied / provided environment / energy.	t you to adopt clean / green technology f our Green journey. As the product / by you are having significant impact on
Henceforth request to supply of products, guidelines / specification, particularly rel energy impact.	services/technology exactly as per the ated to products having environment/
We advise you to train your employees on I to achieve energy performance in your comp	OO's and Dont's / operational guidelines any.
We also request to please suggest us way mergy efficient / ecofriendly products / serv	rs and means / alternatives for better rices for our continuous improvement.
Please find enclosed herewith the copy of statement on sustainable growth duly sign- reference.	f our Energy Policy and our mission ed by our President & Director for your
We strongly advice all our suppliers to go for scope 1 & 2) and LCA study for the products	carbon foot print verification (minimum /services supplied to us.
Tease feel free to revert in case of any cla coordinator Mr. Vinay G.R (vinay aniiksharmailjkmail.com) who will be glad t	rification to our Environment / Energy <u>grifivitp.jkmail.com</u>) or undersigned o respond you in the matter.
Thanking you,	
ours truly	
A cons	
anii Kumar Sharma	
Seneral Manager - Commercial.	
nel: Copy of Energy policy & Mission States	nent.
Made : V D D Read Malandi Marco and an	
Admin Off: 3. Bahadur Shah Zafar Marn. New Delhi , 11	Ala, Phone : (0821) 2581540, 3300111 Fax : (0821) 3080181

Raw Material	Non hazardous, eco friendly, Bio degradable, REECH compliance chemicals				
Appliances – AC, Fridges	Minimum 3 star				
Motors	Min IE 4				
Paints	Low VOC Paints				
Taps	Push Type				
Tube light & Bulbs	LED				
House Keeping cleaning agents	Eco friendly cleaning agents				

Graan Draauramant, Guida linaa

All material code in SAP updated with Energy performance requirement.

- Taking measures in Energy management system by being proactive , innovative and cost effective including procurement of energy efficient products & services.
- As a Green Responsible company, we have re-sourced / re-organized / re-structured our suppliers close to our manufacturing plants. Suppliers in South cater to south plant & North to North plants

Eg. :- Carbon Black - Earlier supplied from Kolkata to VTP & Chennai supplied carbon black to KTP now the supplies reorganized so that Chennai supplies to VTP & CTP and Kolkata supplies to KTP, LTP & BTP. This resulted is overall savings in emission from supply chain

> INVOLVING SUPPLIERS IN CII GREENCO JOURNEY - We are encouraging our suppliers to go for GreenCo certification

10. EMS SYSTEM AND OTHER REQUIREMENTS

Existing monitoring system

ENERGY REVIEW

Daily shop floor review

Plant # 1&3 : At 11:30hrs – By Unit Head & Plant Head Plant # 2 : At 10:00 hrs - By Unit Head & Plant Head

Monthly review

Energy Performance review -by 1st week of Every Month (Unit Head) Energy review – 1st Week of every month by Mfg. Director Business Review Meeting (BRM) – 2nd Week of every month -President

- Annual Performance Review
 EnMS Management Review
 Meeting
- ✤ Annual Performance Review meeting at HO
- Benchmarking of Targets w.r.t industry standards Annually
 Review of targets is done based on high impact projects

ISO 50001:2018 CERTIFICATE

Certificate of Registration

ENERGY MANAGEMENT SYSTEM - 15O 50001:2018

This is to certify that:

3K Tyre & Industries Ltd. Vikrant Tyre Plant KPS Road Metogali Mysore 570 016 Samataka Indus

Haids Certificate No.

ENMS 595612

and operates an Energy Management System which complex with the requirements of ISO 58001-2018 for the following scope:

The Menufacture of Astomotive Bias, Radial & DP the Rasid Tyres, use of Electricity from State Electricity Board and From other Ramewable sources including EEX (Indian Drenge Eschange), Generation of DC Power (as standby), Generation of Solar Power, Generation of power through Recovery Tarbies, Concession of Stater Through Coel Find Boiles, Generation of Compressed Air, Generation of Chilled Water for Process use.

For and on behalf of \$55:

thris Cheung, Head of Compliance & Rick - Asia Pacifi

Original Registration Date: 2013-04-29 Latest Revision Date: 2019-05-05

Effective Cate: 2039-03-22 Expiry Date: 2022-03-31

Page: 5 of 2

...making excellence a habit'

This contrasts was based another with and another the projecty of bill and it bound by the conditions of contrast. As withouts contrasts on the instrumentation optimal

(vited copies on the orbital of some had general exp(ContExp) or Weighters 100, 11, 2022-0000.
Numer startingtons segmenting the sequeral two contExplorations of the sequences of the sequences of the contExploration.

when contractions requiring the stops of the contraction and the application of the KOSCIENT requirements may be clinical by resecting the requirements for early fraction wild only if provided original couples and the complete last.

Universities and Contest: 102. Microsoft Court, Deep Ammun, Round M, Hiller Harrison HC, DW, Tell, n. 44 342 002 0020 1021 Aussessmen III: Territori, Augebraid in August Ander Herbler: "EDERTI an DM Disantin High Nami, Landon, MH Ala, Lik. A Neuroteor of Neuroscient Contestion.

11. NET ZERO COMMITMENT

- > Phasing out coal fired boiler by modifying and upgrading existing Boiler,
- ➢ Utilization of 100% Biomass and CNG gas
- ➤ 100% renewable energy by 2030
- ➢ Reduction in Co2 emission to 50% by 2030
- Clean technology adaptation like Nitrogen curing in all plants
- Carbon sequentialization by planting one million trees by 2030
- Increase use of Renewable material in Tyre

TEAM WORK, EMPLOYEE INVOLVEMENT & MONITORING

REVIEW MEETINGS - Daily shop floor review-Chaired by unit head & plant heads, Monthly review, Annual Performance Review, Energy review –chaired by Mfg. Director, Business review(BRM) - Chaired by President Benchmarking of Targets w.r.t industry standards, Review of targets is done based on high impact projects

a sus of condition. Spectrum	Visaria:	T See	10 1 1	r über	12		
Including the state of the state of the						144	
ments Milden appoint							
contraction in the second states and	ing high specia	T. Lotter.	OUT ADDRESS	In the subscription of	A HEPOLES,	Martin	
yengest?							
Construction Des In 2.4		- ler					
(New proved to suggestion to dotter the	/	1					
V							
			<u> </u>				
			<u>n</u>				
a special profession managers and and an	5 XY004						
0							
			1				
CATT	1 March	and	dillo 18	676a 18	6 Plat IX	1-19 in 15	140
PLANE CORRECTION (MI)	11832	10	1 201-55	387.15	182.81	\$2.8	LMU.
NAME OVER TY DIRECT	106002	15	15.000	15290	149400	194600	1040
PL/30" 3PK	2.014	2.00	sine .	\$30	6.319	63.9	6.9
1	22.22	0-00	100.55	122.14	1000	1000	125.7
n cellfren.	Mar.	55975	102.92	0000	ADDA.	APRN.	31.0
KOLINE DATE LODING THOSE	30033	909	5768	1925	10605	- 998	364
COMPARING THE JOLD DE	188	31.7	32.8	1.50	262	2092	88
BOTCALL VIELENCE	scn.	14.08	MIC	046	88.	HIT	68.80
1947 UND DATE?	2004	35	7.53	SINK	5855	200	1424
A BURG HELA DALLAST	3181	264	275	178.	1244	1384	154
IBADIE CUTHER DE GAP	115	385	1200	2.4	210	12.65	7.30
0.01504.059010404362	041	4442	2.62	47/9	50%	306	148
BORDED-EDK-	\$969	SOM	5865	500	879	- 1465	18
LUE PRODUCT		56.00	2/669	1/082	17180	Max.	10.7
0.0			63	660	0.5	2005	113
	nitoring	b	19081	18006	0.043	11116	1996
Daiby Mor	moning	1	847	UPW .	1121	Em	EB
C Daily Mor	at	1	19670	19626	. GYK	1111	1243
C Daily Mor		- Terr	1845	1290	183	1537	1/1
E Daily Mor She			84	194	196	904	. 500
	~	100					
Daily Mor She	1m	613	1867	MOT	2012	111	311

- > On the job training is also being imparted to employees in regard to conservation of energy.
- > Employees have been identified for undergoing training in department where significant energy use .
- > Energy conservation tips are being displayed in the prominent places like utility, production hall etc
- Employee suggestions on conservation of energy. Suggestions are evaluated & implemented
- Employees in CFTs have made many Kaizens to conserve energy.

TEAM WORK, EMPLOYEE INVOLVEMENT & MONITORING

Energy Kaizens (Nos)

400 350 310 350 300 250 250 175 200 120 150 100 50 0 2019-20 2020-21 2021-22 2022+-23 2023-24 Target

Training on energy conservation (Hrs)

Energy related suggestions (Nos)

KAIZEN SHEET							Company	MM/YY	SI.No	
Productivity	Quality	Cost	Delivery	Safety	Morale	Energy	Environ- ment	JKTIL		
Kaizen Title: Red	uce Breakdov	vn in CSSR 1	yre Building	Machine				Implemented Area:		
Problem/Presen Power contactor CSSR Tyre Buildin	t Status: & Inching re ng – M/c	egulator pro	blem in	Before Impro	ovement:		2	Implement Mr. Hiremath Mr. Sandeep Mr. Mahesh Resu (a) Qualita > Mainte	ted by: h It/Benefit: tive mance Fitter I reduced	aligue
Real Root Cause Identification:			Temprovement:			 Team morale improved (b) Quantitative > Reduction in power consumption by 5325 Kwh > Reduction in CO2 emission by 2.8 Ton / Annum Oil leakages eliminated from avg 2 ltrs / month to Zoro 				
No other prov	ision to reduce	the main mot	tor speed					 ➢ Productivity Average 960m ➢ Annual savir annum Standardizat 	, improved b nin / month ngs of ` 41,00	у 207
Initial Design :	No Drive to re	auce the spe	ea					Machine Dra	wing updat	ed
Root cause: Free	quent Failure	of Regulato	r & contacto	r due to – Co	ontactor logic	system		How many places this Kaizen		
Idea to eliminate	e root cause:	Provide va	ariable frequ	uency drive				-		,
Counter-measure: Introduce variable frequency drive instead of controlling the movement by contactor logic						-na-				

AWARDS, ACKNOWLEDGEMENT

CEM AWARD OF EXCELLENCE IN ENERGY MANAGEMENT by CEM Canada

Single Use Plastic Free certified

State Export Excellence Award from Govt. Of Karnataka

CII National Award for Excellence in Energy Management 2022

21st Greentech SAFETY **AWARD 2023** The Most Admired Top Honour WINNER **JK TYRE & INDUSTRIES LTD.** OFF THE ROAD TYRE PLANT UNIT-3, MYSURU CATEGORY SAFETY EXCELLENCE Presented By: Greentech Foundation Partners in Your Pride & Prestige NEW DELHI (INDIA) NEW YORK (USA) www.greentechevents.com

GREENTECH AWARD- WINNER

AWARDS, ACKNOWLEDGEMENT

EKDAM - Exceed Environment Gold Award

INDIAN ACHIEVERS AWARD

AWARDS, ACKNOWLEDGEMENT

Won Special Jury Award in ISQ TOPS convention 2023

FAME EXCELLENCE AWARD towards livelihood creation & 3R's-Platinum and Excellence in Environment protection -diamond

GREENTECH ENVIRONMENT AWARD WINNER 2022

VTP won the Greentech Environment Award 2022 under the Category of Environment Protection.

NATIONAL ENERGY CONSERVATION AWARD from BEE

FUTURE PLAN

GREENCO PLATINUM PLUS by 2024-25

Thank You

